i) 2x3 + 3x2 – 11x – 6
ii) 2x3 + x2 – 2x – 1
2) Use long division to find the remainder, when 4x3 - 12 x2 + 14x – 3 is divided by 2x – 1. Also verify the result by remainder theorem
3) If ( 4x + 2 ) is a factor of 4x3 – kx2 + 56x – 24, find the value of k
4) If the polynomials ax3 – 3x2 – 13and 2x3 – 5x2 +a, leave the same remainder when divided by x – 2. Find the value of a and also the remainder in each case
6) What must be subtracted from 4x4 – 2x3 – 6x2 + x – 5 so that the result is exactly divisible by 2x2 + x – 1
7) Find the product
i) ( x3 – 6x2 – x ) ( x2 – 6x + 1 )
ii) ( 1.5x2 – 0.3y2 ) ( 1.5x2 + 0.3y2 )
iii) ( x3 + 1 )( x6 – x3 + 1 )
iv) ( a2 – b2 + c2 )( a4 + b4 + c4 + a2b2 + b2c2 – c2a2)
v) ( 2x – y + 3z )( 4x2 + y2 + 9z2 + 2xy + 3yz – 6zx )
8) Evaluate
i) ( 25 )3 – ( 75 )3 + ( 50 )3
ii) ( 0.2 )3 – ( 0.3 )3 + ( 0.1 )3
iii) ( 1002 )3
iv) 293 – 113
v) 463 + 343
9) If a + b = 100 and a2 + b2 = 436, find the value of a3 + b3
10) If a – b = 40 and ab = 600, find the value of a2 + b2 +ab
11) If a + b+ c = 9 and a2 – b2 + c2 = 83, then find the value of a3 + b3 + c3 – 3abc
1) Factorise
i) a2 + 4b2 – 4ab – 4c2
ii) x4 + x2 + 1
iii) ( x + y )2 – ( x – y )2
iv) p2 – 4pq + 4q2 – 6p + 12
v) √2x2 + 3x + √2
vi) 6√3x2 – 47x + 5√3
vii) x2 – 51x + 378
viii) 8( x + y )3 – 27( x – y )3
ix) 32x4 – 500x
x) x3 + 3x2y + 3xy2 + y3 – 0.027
xi) x6 - 729
xii) a3 – b3 + 1 + 3ab
xiii) 2√2x3 + 16√2y3 + z3 – 12xyz
xiv) ( 2x – 3y )3 + ( 4z – 2x )3 + ( 3y – 4z )3
xv) ( 5x – 7y )3 + ( 9z – 5x )3 + ( 7y – 9z )3
PS : Revise the formulae before you attempt these questions
in the question 2 of this page , i am a bit confused , plz help , have to submit tomorrow
ReplyDelete